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Abstract 

Studies of the NLC Main Damping Ring lattice since April 2001 have indicated that there 
are a number of collective effects that potentially limit operational performance.  One 
possible way to reduce the impact of these effects is to raise the momentum compaction of 
the lattice, which requires a significant re-design.  In this note, we present a lattice that 
has a momentum compaction four times larger than the previous design.  We discuss the 
linear and nonlinear dynamical properties of the lattice, and present some initial 
estimates of the sensitivity of the new design to various magnet misalignments. 
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1 Introduction 
The lattice design for the NLC Main Damping Rings (MDRs) reported in April 20011 
met the specified criteria for damping rate, natural emittance and dynamic aperture (using 
a linear model for the damping wiggler).  Subsequent studies showed that the expected 
nonlinearities in the wiggler field should not limit the injection efficiency of the ring2.  
However, estimates indicated that a number of collective effects could limit the 
operational performance of the ring3.  For example, intra-beam scattering (IBS) could 
lead to an increase in the transverse emittances, and the microwave instability could 
increase the energy spread if the vacuum chamber does not meet the demanding 
impedance specification.  Studies of coherent synchrotron radiation suggested that the 
lattice parameters were close to an instability threshold.  These and other effects are 
sensitive to the momentum compaction of the lattice, either through the phase slip 
limiting the build-up of coherent modes in the bunch, or through the reduced charge 
density that comes with a longer bunch.  It was therefore proposed to re-design the lattice 
to increase the momentum compaction.  This could be achieved without compromising 
the natural emittance by reducing the field in the arc dipoles while maintaining the same 
bending angle.  The larger dispersion generates a larger momentum compaction, while 
the increased value of the H-function (normally leading to a larger natural emittance) is 
offset by the reduced quantum excitation resulting from the lower dipole field.  An 
undesired consequence of the lower field is the lower energy loss per turn in the dipoles, 
and an increased wiggler length must compensate this.  Since studies of the nonlinear 
dynamics in the wiggler have suggested that the wiggler should not limit the dynamic 
aperture, some increase in length is acceptable. 

2 Design Considerations 
A systematic approach to the design of damping rings is described elsewhere4.  Here, we 
simply outline some of the goals of the new design. 
 

• The natural emittance and damping times are designed for an injected normalized 
rms emittance of 150 µm, and repetition rate 120 Hz.  This includes a 50% 
margin on the nominal injected beam emittance of 100 µm, to allow, for 
example, for injection jitter filamenting into the transverse phase space. 

• The lattice has four arcs composed of detuned theoretical minimum emittance 
(TME) cells, with four insertion straights.  The damping wigglers occupy two 
opposite straights, while the two remaining straights accommodate the 
injection/extraction systems, circumference correction chicane and RF cavities.  
The use of four straights creates a flexible geometry.  For example, changes to 
the length of the wiggler straight can be made without affecting the 
injection/extraction straights. 

• To raise the thresholds or reduce the impact of a range of collective effects, the 
momentum compaction has been increased by roughly a factor of four, compared 
to the April 2001 lattice.  The RF voltage has also been increased so that the RF 
acceptance is larger and the slope at the synchronous phase is more linear.  The 
net result is that the bunch length has increased by less than a factor of two, from 
3.7 mm to close to 5.5 mm. 



   
 

 3 

• The increase in momentum compaction has been achieved by reducing the dipole 
main field from 1.2 T to 0.67 T (the gradient in the dipole has also been reduced, 
from –6.6 T/m to –2.1 T/m).  The length of the dipole has increased from 0.96 m 
to 2.0 m.  To achieve the same damping, the total length of the wiggler has 
increased from 46.2 m to 61.6 m.  The nominal peak field has been kept fixed at 
2.15 T, but a more accurate model of the wiggler field has been used, based on 
the present field map.  The wiggler model in the lattice includes the horizontal 
and vertical focusing and integrated field that are consistent with the field map. 

• The vertical tune has been moved closer to the half integer, to reduce the 
sensitivity to magnet misalignments. 

3 Lattice Parameters 
The “external” parameters driving the lattice design are shown in Table 1.  The principal 
lattice parameters, compared with the April 2001 lattice, are shown in Table 2. 

Table 1: “External” parameters. 

Bunches per train bN  192 

Bunch-to-bunch spacing 
bτ  /ns 1.4 

Kicker rise/fall time kτ  /ns 65 

Collider repetition rate f  /Hz 120 

Injected horizontal/vertical emittance injγε  /mm mrad 150 

Extracted horizontal emittance extx,γε  /mm mrad <3 

Extracted vertical emittance exty,γε  /mm mrad <0.02 

 
Lattice functions for different sections of the lattice are shown in Figure 1 through Figure 
6 below.  Note that the main arc dipoles have a horizontally defocusing gradient, with a 
normalized value 32.01 −=k  m-2 (gradient –2.1 T/m).  Also, the horizontally focusing 
quadrupoles in the arc cells have a small horizontal offset, to provide some bending (in 
the opposite direction to the main dipoles).  This is necessary in a highly compact TME 
cell to tune the dispersion and horizontal beta function for low emittance.  Without this 
extra bending, the ability to vary the dispersion and beta function independently is very 
limited.  The parameters for the offset magnets (those in the matching cells into the 
straights require a different gradient to those in the main arc cells) are given in Table 4.  
The required offset of the quadrupole is approximately 10% of the pole-tip radius, and the 
field quality in this region will need to be considered carefully. 
 
The synchrotron radiation integrals, damping partition numbers and mean beta functions 
are given in Table 3. 
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Table 2: Principal lattice parameters. 

  April 2001 February 2003 
Energy E /GeV 1.98 1.98 
Number of bunch trains stored Ntrain 3 3 
Vertical store time a N  4.97 6.11 
Circumference C /m 299.792 299.792 
Arc cell type  TME TME 
Arc cell length /m 5.120 4.908 
Length of wiggler straight(s) /m 62.856 2×49.297 
Length of injection straight(s) /m 62.856 2×22.468 
Number of arc cells  34 + 4×½ 28 + 8×½ 
Main arc dipole field /T 1.20 0.670 
Main arc dipole gradient k1 /m

-2 -1.0 -0.315 
Matching arc dipole field /T 1.20 0.373 
Matching arc dipole gradient k1 /m

-2 -1.30 -0.671 
Betatron tunes Qx, Qy  27.2616, 11.1357 21.150, 10.347 
Natural chromaticity x, y -37.12, -28.24 -30.74, -28.76 
Normalized natural emittance 0 /µm rad 2.17 2.37 
Damping times x, y,  /ms 4.85, 5.09, 2.61 3.63, 4.08, 2.18 
Extracted horizontal emittance x,ext /µm rad 2.18 2.37 
Equilibrium vertical emittance y,equ /pm rad 0.013 0.019 
Extracted vertical emittance y,ext /µm rad 0.019 0.020 
Momentum compaction  0.295×10-3 1.388×10-3 
RF frequency fRF /MHz 714 714 
Harmonic number h 714 714 
RF voltage VRF /MV 1.07 2.0 
Number of RF cavities  3 5 
RF acceptance RF 1.5 % 1.52 % 
Rms energy spread  0.0909 % 0.0975 % 
Natural Bunch length z /mm 3.60 5.49 
Synchrotron tune Qs 0.003496 0.0118 

Wiggler peak field wB̂  /T 2.15 2.15 

Wiggler period w /m 0.27 0.27 
Wiggler total length Lw /m 46.238 61.568 

Integrated wiggler field ∫ sBwdˆ 2  /T2m 106.866 168.1b 

Energy loss/turn from dipoles U0 /keV 247 136 
Energy loss/turn from wiggler Uw /keV 530 834 
Total energy loss/turn U0 + Uw /keV 777 970 
Energy loss ratio Fw = Uw / U0 2.15 6.13 
a The vertical store time is the number of vertical damping times for which each train is stored. 
b Determined from wiggler field map, and includes end poles and non-sinusoidal variation of the field. 
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Table 3 

Synchrotron radiation integrals and averaged lattice 
parameters in the April 2001 and February 2003 lattices. 

 April 2001 February 2003 
I1 0.08846 m 0.41604 m 
I2 3.6592 m-1 4.4812 m-1 

I3 1.0237 m-2 1.3885 m-2 

I4 -0.18977 m-1 -0.55623 m-1 

I5 3.8337×10-4 m-1 5.3552×10-4 m-1 

Jx 1.0519 1.1241 
Jy 1 1 
J  1.9481 1.8759 

xβ  3.64 m 3.97 m 

yβ  7.06 m 6.89 m 

xH  0.00191 m 0.00309 m 

 

Table 4 

Parameters of offset quadrupoles in the arc cells. 

Magnet name QF QFM 
Location Main arc Matching into straights 
Length 0.25 m 0.25 m 
Gradient 27.73 Tm-1 30.40 Tm-1 
Bending angle 2.729 mrad 2.729 mrad 
Dipole component 0.07211 T 0.07211 T 
Horizontal beam offset 2.60 mm 2.37 mm 
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Figure 1 

Lattice functions in an arc (TME) cell.  Note that the horizontally focusing 
quads are offset to provide a small amount of bending, and are represented 
in the deck as combined function dipoles. 

 

 
Figure 2 

Lattice functions in the injection straight.  The chicane is to the right 
(downstream) of the injection kicker, and is tuned to the nominal setting 
(magnets at half strength), giving some negative dispersion. 
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Figure 3 

Lattice functions in the extraction straight.  The RF cavities are to the left 
(upstream) of the extraction kicker. 

 

 
Figure 4 

Lattice functions through the wiggler straight.  The apparent “beta 
beating” results from the independent tuning of different quadrupoles, to 
allow control of the global tune of the lattice. 
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Figure 5 

Beta functions for the complete lattice. 

 

 
Figure 6 

Dispersion function through the complete lattice. 

 
Note that the total circumference is slightly larger than the 298.95 m minimum required 
to accommodate three bunch trains (192 bunches at 1.4 ns separation) with 65 ns kicker 
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rise/fall time; the additional circumference was required to meet the constraints on beta 
functions and phase advances in the straight sections.  However, the difference between 
the actual and minimum circumference is less than 1%, and does not have a significant 
effect on the damping times or the extracted emittance.  The actual circumference gives a 
harmonic number of 714, where the RF frequency is 714 MHz, so the revolution period is 
e ��� � � � ��� 	 
  
 
The footprint of the lattice is shown in Figure 7.  A complete arc is shown in Figure 8, 
and a single arc cell in Figure 9. 
 

 
Figure 7 

Footprint of the February 2003 lattice.  The scales on the grid are in meters. 
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Figure 8 

Layout of one arc.  Bending magnets are in magenta, quadrupoles in blue and sextupoles in red. 

 
Figure 9 

Layout of a single arc cell.  The bending from the QF quadrupoles is less than 3 mrad, and is not 
visible on this scale. 
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4 Chromatic Properties 
The sextupoles are adjusted to give zero first-order chromaticity, although there remains a 
residual tune shift with momentum, as a result of higher order chromaticity.  The 
variation of horizontal and vertical tune with momentum deviations up to ±1.5% are 
shown in Figure 10, and the working point in tune space is shown in Figure 11. 
 

 
Figure 10 

Variation of tunes with momentum, up to ±1.5% momentum deviation. 
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Figure 11 

Working point of the lattice in tune space.  The working point line shows 
variation of the tune with momentum deviations up to ±1.5%.  Resonance 
lines up to fifth order are shown. 

5 Dynamic Aperture 
The damping ring must have a good dynamic aperture to minimize particle loss, 
particularly during injection.  The aperture is limited by nonlinear lattice elements, in 
particular the sextupoles, which are used in the dispersive regions (the arcs) to correct 
chromaticity, and tuned to give the lattice zero chromaticity.  The nominally linear 
elements, such as the dipoles, quadrupoles and wiggler, may also have nonlinear 
components as a result of systematic and random field errors; these will also affect the 
dynamic aperture, and the allowable reduction in the aperture is a consideration for 
setting the tolerances on the field quality in these elements.  For the present, however, we 
consider only nonlinear effects arising from the sextupoles, and from an octupole 
component in the wiggler. 
 
The lattice has been tuned with some efforts made to optimize the phase advances over 
different sections, namely the arc cells, and the wiggler and injection/extraction straights.  
In the arc cells, the lattice functions were controlled to give suitable locations for 
chromatic sextupoles, i.e. locations with large dispersion and good separation of the 
horizontal and vertical beta functions.  The tunes of a single arc cell were chosen to give 
good dynamic aperture for a lattice constructed entirely from arc cells.  The straights 
were tuned starting from integer phase advances in both planes (to maintain the symmetry 
of the lattice), with some detuning from this condition to reduce the chromaticity of the 
straights and empirically improve the dynamic aperture of the full lattice.  
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The two families of sextupoles are tuned to give zero first-order chromaticity.  The only 
other explicitly non-linear term included in the lattice at present is an octupole component 
in the wiggler.  Recent analysis of the field map for the NLC Main Damping Ring 
wiggler has suggested that the third-order dependence of the transverse kicks on the 
transverse co-ordinates may be represented by an octupole component in a single period 
of this device with integrated strength k3l ≈ 100 m-3.  It is important to note that not only 
is there significant uncertainty in this value, but that the octupole component is only a 
crude representation of the nonlinear dynamics in the wiggler.  For example, it is clear 
from Figure 17 below that the octupole term does not exactly reproduce the correct 
dynamics in both planes simultaneously.  The problem of accurately representing the 
wiggler dynamics in a tracking code is the focus of work in progress5.  We give some 
further discussion below of the wiggler model we have used. 
 
Horizontal and vertical phase space portraits for the full lattice are shown in Figure 12 
(no octupole component in the wiggler) and Figure 13 (including an integrated octupole 
component of 100 m-3 per wiggler period). 
 

 
(a) 

 
(b) 

Figure 12 

(a) Horizontal and (b) vertical phase space portraits at the center of the first quadrupole after the 
injection kicker ( x = 16.0 m, x = -0.573, y = 1.579 m, y = 0.154), with no octupole component in the 
wiggler.  The particles are launched at steps of the injected beam size, assuming a normalized 
injected emittance of 150 µm.  For the horizontal phase space, the particles are launched with a small 
(0.5 mm) vertical amplitude. 
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(a) 

 
(b) 

Figure 13 

(a) Horizontal and (b) vertical phase space portraits at the center of the first quadrupole after the 
injection kicker, with an integrated octupole component of 100 m-3 per wiggler period.  The starting 
conditions and scales are the same as in Figure 12. 

 

 
(a) 

 
(b) 

Figure 14 

Dynamic aperture for on-momentum particles using (a) a linear wiggler model and (b) an integrated 
octupole component of 100 m-3 per wiggler period.  The particles were tracked through 500 turns, 
with the observation point at the center of the first quadrupole after the injection point.  The points 
are separated by the injected beam size, and the half ellipse shows 15 times the injected beam size. 

 



   
 

 15

 
(a) 

 
(b) 

Figure 15 

Dynamic aperture with a wiggler model including the octupole component, and for momentum 
deviations (a) -1.0% and (b) +1.0% using the same conditions as Figure 14. 
 
On-momentum dynamic aperture plots for the full lattice (first with a linear wiggler 
model and then with a wiggler including an octupole component) are shown in Figure 14.  
We emphasize that the nonlinear model for the wiggler is only a rough approximation, 
and there are no systematic or random field errors or gradient errors on the dipoles, 
quadrupoles or sextupoles.  Figure 15 shows the dynamic aperture for particles with 
±1.0% momentum deviation and including the octupole component in the wiggler.  
Although the dynamic aperture falls within the fifteen times injected beam size specified 
for on-momentum particles, we feel there is still sufficient margin.  More detailed studies 
are needed to determine the real acceptance of the storage ring, including the physical 
aperture and significant errors. 

6 Wiggler Model 
The field map we have used for the wiggler is the same as that used previously.  For 
analysis of the dynamics in the wiggler, we have fitted the coefficients of a cylindrical 
mode representation of the field: 
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where Im(x) are modified Bessel functions of the first kind.  The coefficients are found by 
selecting a reference radius, and performing a two-dimensional Fourier transform on the 
radial field component in the azimuthal and longitudinal variables.  It can be shown that 
this procedure smooths the field and reduces the fitting errors inside the reference radius6.  
Choosing a reference radius close to the pole tip ensures a good fit for the field in the 
region of interest for the beam dynamics.  Some sample field fits obtained for the wiggler 
using this technique are shown in Figure 16.  The coefficients can then be used in a 
symplectic integrator to track through the wiggler7,5.  Since this is a slow process for a 
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long wiggler, we have simply calculated the transverse kicks given to a particle entering a 
single period of the wiggler at different transverse co-ordinates, and developed a model 
using standard elements in MAD8 that (approximately) reproduces these dynamics.  The 
results are shown in Figure 17. 
 

 

(a) 

 

 

(b) 

 

(c) 

 

 

(d) 

Figure 16 

Sample field fits for the NLC MDR wiggler.  The solid line shows the field data, and the broken line 
shows the fit.  (a) Vertical field component vs longitudinal co-ordinate; (b) vertical field component 
vs horizontal co-ordinate; (c) longitudinal field component vs longitudinal co-ordinate at 4 mm 
vertically offset from the wiggler axis; (d) longitudinal field component vs vertical co-ordinate. 

 
We note that as well as the third-order (octupole) component, there is some horizontal 
linear focusing, and the vertical focusing deviates from that expected from a sinusoidal 
model of the wiggler field.  (The vertical focusing from a sinusoidal model is the same as 
that from a hard-edged dipole model of the wiggler).  The horizontal linear focusing 
comes from the second-order roll-off of the vertical field with horizontal co-ordinate, and 
the third-order focusing comes from the fourth-order roll-off of the field.  The variation in 
the vertical dynamics comes from the roll-off and from longitudinal harmonics.  We find 
that the dynamics indicated in Figure 17 are consistent with a hard-edged dipole model, 
with the following modifications: 
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• A field gradient of –0.111 T/m is added to each pole, to give the correct horizontal 
focusing. 

• The peak field is increased from 2.15 T by 6%.  This gives an integrated squared 
field strength in good agreement with that calculated directly from the field map, 
and also, in combination with the field gradient, gives the correct linear vertical 
focusing. 

• An thin octupole of integrated strength 100 m-3 is added to each wiggler period, to 
approximate the third-order dynamics. 

 
The octupole component does not exactly reproduce the dynamics in both planes, and we 
have arbitrarily selected a value that gives a good fit for the horizontal plane.  The 
approach we have used to modeling the wiggler is still in development5, and will be 
reported in more detail elsewhere.  We hope that a more rigorous study of the effect of 
the wiggler on the dynamic aperture of the lattice will be carried through in the near 
future. 
 

 

(a) 

 

(b) 

Figure 17 

(a) Horizontal and (b) vertical kicks as functions of the corresponding co-ordinate in one period of 
the NLC MDR wiggler.  The solid line shows the results from a detailed symplectic integrator, while 
the heavy broken line shows the results of a dipole model with quadrupole and octupole components.  
Note that we have extrapolated the field beyond the reference radius of 9 mm. 

7 Other Systems 

7.1 Circumference Correction Chicane 
A chicane provides the possibility of making small corrections to the circumference 
without the need to adjust the RF frequency.  The specified correction range, based on 
observations of existing rings8, is ± 2 mm, and the chicane included in the present lattice 
design meets this specification.  The length of the chicane is 3.80 m, which allows it to fit 
in a 4.42 m drift section of the injection/extraction straight, with a drift of 0.31 m between 
the faces of the outside dipoles and the nearest quadrupoles.  Each of the four chicane 
magnets has an effective length of 0.6 m at the nominal (half maximum) field strength of 
0.492 T. 
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7.2 RF Cavities 
An RF voltage of 2.0 MV is required to achieve a momentum acceptance of ±1.5%.  Each 
cavity is capable of providing up to 0.5 MV, so in principle four cavities could be 
sufficient.  However, this allows no overhead, and it might be necessary, for example, to 
compensate intensity-dependent bunch lengthening effects by increasing the RF voltage.   
We have therefore designed the lattice to accommodate five cavities.  Each cavity 
requires approximately 1 metre of free space9.  To avoid transients arising from variations 
in beam loading during injection/extraction, the cavities must be placed downstream of 
the injection kicker and upstream of the extraction kicker (in the present design they are 
positioned just before the extraction kicker).  In this case, no transients are induced as 
long as injection occurs simultaneously with extraction. 
 
At present, the cavities are separated by 2.25 RF wavelengths, that allows pairs of 
cavities to be powered by a single klystron, with the power divided in a “magic T”.  Thus, 
there are several possible configurations, using between three and five klystrons; since it 
is also possible to power three cavities from a single klystron, it may be possible to use 
just two klystrons.  The optimal configuration will need further study, and we simply note 
at present that using one klystron for each cavity provides the greatest flexibility, and will 
provide some overhead, allowing the ring to continue operation (albeit with impaired 
performance) in the case of any one klystron failing. 

7.3 Injection/Extraction 
The injection/extraction components have been positioned according to space constraints 
and the required phase advances.  The components are represented in the deck by zero-
bend dipoles, of lengths as specified in the ZDR10.  Each system consists of a kicker (1.2 
m length with a kick angle of 2.5 mrad) and a pair of septa (0.83 m, 25 mrad thin blade 
and 1.0 m, 90 mrad thick blade).  The phase advance between the kicker and the septa is 
close to 0.25 π2×  horizontally, so that the horizontal momentum change from the kicker 
is converted into a large transverse displacement at the first septum. 
 
The extraction geometry is shown in Figure 18.  Assuming a half-aperture in the zero-
field region of the first septum of 20 mm (the same as in the arcs) and a blade thickness 
of 5 mm, there is a clearance of 2.5 mm between the trajectory of the injected/extracted 
beam and the septum blade.  This is a rather smaller clearance than we should prefer.  
The injected/extracted beam passes through two quadrupoles.  At Q4E it passes between 
7 mm and 8 mm off-axis, receiving a kick of 3.2 mrad in the same direction as that from 
the kicker.  At Q5E, located between the septa in the scheme shown, it passes between 45 
and 50 mm off-axis, receiving a kick of 17.6 mrad in the opposite direction to that from 
the kicker.  This magnet will need a pole-tip radius of around 60 mm, which at its 
nominal strength would give a pole-tip field of 0.72 T.  Overall, the engineering design of 
the injection/extraction regions (bearing in mind the need for a low impedance vacuum 
chamber) is likely to present some challenges, though it might be possible to modify the 
septum lengths and fields to make things easier.  For example, an alternative geometry is 
shown in Figure 19.  The only change from Figure 18, is that the length and kick angle of 
the first septum have been reduced by half.  The clearance at the blades of both septa is 
now 4 mm, and the pole tip radius of Q5E is 52 mm, and the pole tip field has been 
reduced to 0.624 T.  The total kick angle of the system is 94 mrad as opposed to 103 
mrad in the previous case. 
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The apertures through the zero-field regions of the septa are assumed to be the same as 
the aperture in the arcs to avoid the need for transitions that may add to the impedance.  
Engineering studies are needed to determine the best configuration. 

 
Figure 18 

Geometry of the extraction system.  The rectangles represent the nominal length and aperture of the 
quadrupoles, extraction kicker and septa.  The first septum applies a 25 mrad kick and has a 5 mm 
blade thickness.  The second septum applies a 90 mrad kick, and has a 15 mm blade thickness. 

 

 
Figure 19 

As Figure 18, but with the length and kick angle of the first septum reduced by half. 
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Other options for the layout of the injection/extraction scheme may be based on the use of 
a septum quadrupole for Q5E, where the injected/extracted beam sees a zero-field region 
of the magnet.  Such a magnet has been used for example in the interaction region of 
PEP-II11. 
 
The rise/fall time of the kickers is assumed to be 65 ns, which is slightly less than the gap 
between bunch trains, though it is to be expected that the following stored train will see 
some of the falling edge of each kicker.  In the previous lattice design, a half-integer 
phase advance separated the kickers, so that the pulse of the second kicker could be 
shaped to compensate for errors arising from the trailing edge of the first.  Unfortunately, 
space constraints in the present lattice design preclude this arrangement. 

7.4 Vacuum Chamber Aperture 
The dipoles, quadrupoles and sextupoles have achievable pole-tip fields if the pole-tip 
radius is assumed to be 25 mm.  This allows a possible increase in the internal diameter 
of the vacuum chamber outside the wiggler straights from 32 mm (April 2001 lattice) to 
40 mm, with 3 mm wall thickness and 2 mm clearance.  Increasing the vacuum chamber 
aperture has the benefit of assisting the achievement of low vacuum pressure, and also 
reduces the strength of the resistive wall wake fields, which are expected to drive coupled 
bunch instabilities3. 
 
Unfortunately, the wiggler sections still require a narrow 16 mm internal diameter 
vacuum chamber. 

8 Initial Estimates of Alignment Sensitivities 
The attainment of very low vertical emittance will be a key performance measure of the 
Main Damping Rings.  Vertical emittance comes from vertical dispersion and betatron 
coupling.  To get an idea of the response to misalignments of the present lattice compared 
to the previous design, we can make some simple estimates of the sensitivity of the 
emittance to uncorrelated sextupole misalignments and quadrupole rotations, both of 
which types of misalignments generate vertical dispersion and betatron coupling. 
 
The vertical emittance from uncorrelated sextupole misalignments may be written: 
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and the vertical emittance from uncorrelated quadrupole rotations may be written: 
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where the “magnet sums” are given by: 
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The values of the summations for the previous and present lattices are given in Table 5. 

Table 5 

“Magnet sums” for present and previous NLC MDR lattices. 

 April 2001 February 2003 

2C 5.54×105 m-2 5.25×105 m-2 
2D 1300 m-1 2890 m-1 
1C 1930 1670 
1D 2.94 m 7.81 m 
1O 740 m-1 443 m-1 

 
We can define the sensitivity as the rms misalignment that on its own will generate the 
specified equilibrium vertical emittance.  The values for the April 2001 and February 
2003 lattices are given in Table 6.  Note that because of the gradient in the dipoles, we 
have included these magnets in the quadrupole calculations.  The sensitivity values may 
be compared to those given by Raubenheimer12 for some other electron storage rings.  
The values of the magnet sums are very similar for the April 2001 and February 2003 
lattices.  The reasons for the looser sensitivities are a more optimum vertical tune, and the 
larger vertical emittance that is allowed by the faster vertical damping. 
 
The beam stability in the presence of magnet vibration is also an important performance 
measure, because the extracted beam should have transverse jitter less than the beam size.  
We can again write down a simple expression to estimate the orbit motion in response to 
an uncorrelated quadrupole misalignment: 

y

O

y

Y
y

πνβ 2
12

quadrupole

2
co

sin8

Σ∆≈  
 

where 

( )∑=Σ
squadrupole

2
1y1 lkO β   

We can again define a sensitivity, as the rms quadrupole vertical misalignment that on its 
own will generate an orbit jitter equal to the equilibrium beam size.  The values for the 
present and previous lattices are given in Table 6.  We again include the gradient dipoles 
in the quadrupole calculations.  This time, the relaxed sensitivity is a combination of a 
smaller magnet sum, more optimal vertical tune, and larger equilibrium vertical beam 
size. 
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Table 6 

Sensitivity estimates for vertical emittance and orbit jitter. 

 April 2001 February 2003 
Sextupole vertical alignment 32 µm 53 µm 
Quadrupole rotation 336 µrad 511 µrad 
Quadrupole vertical alignment 79 nm 264 nm 
 
We see that the new lattice is significantly less sensitive to the misalignments considered, 
and the sensitivity values are in fact now very comparable to those for some existing 
electron storage rings with demonstrated performance12. 

9 Design Margins 
The challenges in construction and operation of the damping ring make it prudent to 
include some margin between the specified performance and the ideal performance of a 
machine constructed and operating precisely as designed.  In some cases, the 
performance specifications already include some margin.  For example, the injected beam 
is assumed to have a normalized emittance of 150 µm, which allows a 50% margin for 
beam jitter on top of the nominal 100 µm emittance of the beam coming from the source.  
Some margins (e.g. in damping time) are easy to quantify, while others (e.g. in dynamic 
aperture) are not.  In Table 7 we attempt to identify those parameters that include some 
margin, indicate the reason for or benefit of the margin, and quantify the margin where 
possible. 
 

Table 7 

Summary of margins between nominal and design parameter values. 

Quantity 
Nominal or 

Required Value 
Design Value Margin allowed for… 

Injected emittance 100 µm 150 µm Injection jitter, filamentation 
Horizontal damping time 5 ms 3.63 ms Variation in wiggler field 
Natural emittance 3.0 µm 2.36 µm Tuning errors, collective effects 
Vertical damping time 5 ms 4.08 ms Relaxation of coupling requirement 
Equilibrium normalized 
vertical emittance 

0.013 µm <0.019 µm Relaxation of alignment tolerances 

Energy spread < 0.1 % 0.0975 % Almost no margin for collective effects 

Bunch length < 5 mm 5.5 mm 
Specified value relaxed to reduce impact 
of collective effects 

Maximum RF Voltage 2.0 MV 2.5 MV 
Increased RF acceptance, control of 
bunch length 

Circumference 298.95 m 299.79 m Additional 1 ns (!) kicker rise/fall time 

Dynamic aperture 
few × injected 

beam size 
15×injected 
beam size 

Magnet errors, tuning errors, linearity of 
phase space 

Energy acceptance 2% full width 2% full width No margin 
Magnet (not wiggler) pole-
tip radius 

20 mm 24 mm Increase in vacuum pipe aperture 
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10 Summary of Magnet Parameters 
A summary of the parameters for the magnets used in the present lattice design is shown 
in Table 8. 

Table 8 

Magnet parameters in present main damping ring lattice design. 

Type Name Location 
Length 

/m 
Pole-tip 

Radius /m 
Bend Angle 

/rad 
Normalized 

Gradient 
Pole-tip 
Field /T 

Count 

Dipole B Arc 2.0 0.025 0.20180814 -0.3153 m-2 0.6575 28 
Dipole BM Matching into straights 1.8 0.025 0.10090407 -0.6712 m-2 0.3653 8 
Dipole BBC Chicane 0.6 0.025 ±0.089424 - ±0.9844 4 

Quadrupole QF Arc 0.25 0.025 -2.7293×10-3 4.198 m-2 0.6932 56 
Quadrupole QFM Matching into straights 0.25 0.025 -2.7293×10-3 4.602 m-2 0.7599 8 
Quadrupole QD Arc 0.25 0.025  -4.453 m-2 -0.7353 32 
Quadrupole Q1I Injection straight 0.20 0.025  4.555 m-2 0.7521 1 
Quadrupole Q2I Injection straight 0.20 0.025  -4.542 m-2 -0.7500 1 
Quadrupole Q3I Injection straight 0.20 0.025  1.822 m-2 0.3009 1 
Quadrupole Q4I Injection straight 0.20 0.025  -2.152 m-2 -0.3554 1 
Quadrupole Q5I Injection straight 0.20 0.060  1.726 m-2 0.6840 1 
Quadrupole Q6I Injection straight 0.20 0.025  -4.192 m-2 -0.6922 1 
Quadrupole Q7I Injection straight 0.20 0.025  4.642 m-2 0.7665 1 
Quadrupole Q1E Extraction straight 0.20 0.025  4.648 m-2 0.7675 1 
Quadrupole Q2E Extraction straight 0.20 0.025  -4.203 m-2 -0.6940 1 
Quadrupole Q3E Extraction straight 0.20 0.025  1.722 m-2 0.2843 1 
Quadrupole Q4E Extraction straight 0.20 0.025  -2.139 m-2 -0.3532 1 
Quadrupole Q5E Extraction straight 0.20 0.060  1.821 m-2 0.7217 1 
Quadrupole Q6E Extraction straight 0.20 0.025  -4.544 m-2 -0.7503 1 
Quadrupole Q7E Extraction straight 0.20 0.025  4.560 m-2 0.7530 1 
Quadrupole QFW Wiggler straight 0.15 0.025  3.214 m-2 0.5307 10 
Quadrupole QDW Wiggler straight 0.15 0.025  -1.211 m-2 -0.2000 10 
Quadrupole Q1WM Wiggler straight 0.25 0.025  4.081 m-2 0.6739 4 
Quadrupole Q2WM Wiggler straight 0.15 0.025  -4.658 m-2 -0.7692 4 
Quadrupole Q3WM Wiggler straight 0.15 0.025  3.171 m-2 0.5236 4 
Quadrupole Q4WM Wiggler straight 0.15 0.025  -1.217 m-2 -0.2010 4 
Sextupole SF Arc 0.10 0.025  164.7 m-3 0.3400 64 
Sextupole SD Arc 0.10 0.025  -157.4 m-3 -0.3249 64 

Kicker KIK Injection/Extraction 1.2  0.0025   2 
Septum SEP1 Injection/Extraction 0.83  0.025   2 
Septum SEP2 Injection/Extraction 1.00  0.090   2 

 

11 Summary of Results and Further Work 
The lattice we have described in this note meets the main design criteria. 
• The lattice has sufficiently fast damping and low natural emittance to meet 

requirements on extracted emittance. 
• The dynamic aperture is in excess of fifteen times the injected beam size (for zero-

momentum deviation), which should allow good injection efficiency. 
• The circumference correction chicane is capable of correcting over a range ±2 mm. 
• The lattice has sufficient room for RF cavities. 
 
Items that need to be addressed include the following. 
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• A more rigorous and detailed analysis of the beam dynamics in the wiggler needs to 
be carried out. 

• The effects of systematic and random field errors in the dipoles, quadrupoles, and 
sextupoles need to be studied. 

• The possibility of further optimization of the nonlinear dynamics, leading to 
improvements in the dynamic aperture, should be investigated. 

• Tuning simulations (including focusing errors and a range of alignment errors) need 
to be performed, and specifications for the correction system determined. 

• Designs of the components in the injection/extraction system (including kickers, septa 
and possibly septum quadrupoles) need to be considered. 

• Estimates must be made of the impact of a range of collective effects on the damping 
ring performance. 
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